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Abstract

Titania (TiO2) photocatalysts are produced using hydrolysis of titanium tetraisopropoxide (TTIP) at 100–600◦C. The powders are
characterized by thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Anatase phase was obtained after calcination at 200◦C.
The anatase-rutile transformation takes place at temperatures higher than 400◦C. Adding TiO2 powders prepared at 600◦C to activated
carbon (AC), exhibits much higher photocatalytic activity than commercial TiO2 (Degussa P-25) alone in degradation of 2-naphthol under
the UV-irradiation with O2. This results shows that an optimum adsorption strength on the co-adsorbent (AC) is needed to improve titania’s
photoactivity in reactions of organic pollutant degradation in a shorter time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Heterogeneous photocatalysis is a fast growing field of
basic and applied research. However, the photocatalytic ox-
idation of organic compounds by nanocrystalline TiO2 has
received increasing attention since it can achieve the miner-
alization of a wide variety of organic pollutants to non-toxic
mineral products, including carbon dioxide and water[1–4].

There are many methods of producing TiO2 nanopowders,
such as chemical vapor deposition (CVD)[5], the oxidation
of titanium tetrachloride[6,7], the sol–gel technique[8], and
the thermal decomposition or hydrolysis of titanium alkox-
ides[9]. Fine, spherical TiO2 powders with high values of
specific surface area were prepared by hydrolyzing titanium
tetraisopropoxide (TTIP) with water[10]. Calcination is an
important parameter that can be used to increase the photo-
catalytic activities of both anatase and rutile crystal phases
[11].

Noticeably, strong-metal support interaction was first
reported for noble metals supported on TiO2 [12]. Many
studies have been devoted to the improvement of titania’s
photoactivity by adding an inorganic co-adsorbent to the
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catalyst, such as silica or zinc oxide[13,14]. Adding acti-
vated carbon (AC) to TiO2 induces a strong beneficial effect
because of the high adsorption capacity of AC with organic
molecules. Furthermore, the synergistic effect between
powdered TiO2 and powdered AC have been observed of
phenol[15] and 4-chlorophenol[16].

One important consideration in the solid-photocatalyzed
reactions is the adsorption of the organic compounds on the
surface of photocatalyst particles. It has been often reported
that adsorption is a prerequisite for highly efficient pho-
todegradation[17]. In this paper, we report on the prepara-
tion of TiO2 powders using hydrolysis of TTIP with water.
Also, we compare photocatalytic activity of mixture (TiO2
synthesized+ AC) with commercial TiO2 (Degussa P-25)
in the degradation of 2-naphthol.

2. Experimental

2.1. Preparation of TiO2 powders

The nanopowders of TiO2 catalysts, reported in this
study, have been prepared by TTIP hydrolysis. TTIP
[Ti(OCH(CH3)2)4] (Fluka, purity >99%) was used as a
main starting material without any further purification.
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The appreciated amount (10 ml) of TTIP was dissolved in
distilled water (5 ml). The concentration of titanium was
adjusted to 3 M by HNO3. This aqueous solution was stirred
at high speed for 1 h. After centrifugation, TiO2 particles
were precipitated. The solids were collected and dried at
70◦C during 24 h. Finally, the dried particles were calcined
at temperatures of 100, 200, 300, 400, and 600◦C for 3 h.

The hydrolysis reaction resulting in the formation of the
TiO2 may be represented by the following reaction:

TTIP + 2H2O → TiO2 + 4C3H7OH (1)

2.2. Characterization of the samples

Several techniques were used for characterization of the
powders. Thermogravimetric analysis (TGA) was performed
using a “Labsys TG.DSC 1600◦C” of SETARAM.

Powder X-ray diffraction analysis (XRD) was carried out
using Cu K� radiation in a Siemens D5000 diffractometer.

2.3. Photocatalytic activity of the catalysts

The photocatalytic test-reaction chosen to characterize
the different photocatalysts was the total degradation of
2-naphthol (supplied by Fluka), selected as a model organic
pollutant. All the experiments were carried out using a batch
photoreactor. This photoreactor was a cylindrical flask made
of pyrex optical, transparent to wave-lengthsλ ≥ 290 nm.
UV-light was provided by a high pressure mercury lamp
(Philips HPK 125 W), filtered by a circulating water, and it
entered the photoreactor through the bottom window. The
analysis of the samples detected in 2-naphthol oxidation
were performed by high performance liquid chromatogra-
phy HPLC (type JASCO). A reverse-phase column (length,
25 cm; internal diameter, 4.6 mm) ODS-2 Spherisorb was
used. The mobile phase was composed of 80% acetonitrile
to 20% distilled water. The flow rate was 0.4 ml/min, and
the detector was set at 280 nm.

TiO2 (600◦C) prepared in this study (0.75 g), and (0.25 g)
of commercial AC (from Scharlau, extra pure) were added

Fig. 1. TG measurements of as-prepared powder.

under stirring in 1 l of an initial concentration of 2-naphthol
(5 × 10−4 mol/l) and maintained in the dark for 90 min. It
has been shown that this period was sufficient to reach the
adsorption equilibrium. The quantity of 0.75 g was selected
as it gives the optimal specific degradation rate using com-
mercial TiO2 (Degussa P-25) (mainly anatase with a surface
area of 50 m2/g) as a reference. The amount of 0.25 g AC
was chosen to ensure a good adsorption of 2-naphthol. For
comparison, experiments were performed with a slurry sus-
pension of powder TiO2 (Degussa P-25). Furthermore, the
reaction was carried out isothermally at room temperature
(25◦C).

3. Results and discussion

3.1. Characterization of TiO2 powders

Fig. 1 depicts the thermogravimetric characteristics mea-
sured for these particles. Obviously, the weight loss proceeds
in stages with increasing temperature, while the most signif-
icant loss occurs between 100 and 400◦C. The total weight
loss monitored up to 400◦C is 50.902% for the as-prepared
powder. The TGA measurements indicate that the organic
phases decompose at temperatures below 400◦C. From the
TGA data of the as-prepared powders, we presume that
TiO2 is formed. This results have been observed previously
[18,19].

In Fig. 2, we show the XRD patterns of as-prepared TiO2
powders, heat-treated at various temperatures from 100 to
600◦C for 3 h. The powder was amorphous. After calcining
at 200◦C anatase appears at 2θ = 25.4◦. As the calcination
temperature increases (600◦C), the rutile peak at 2θ = 27.5◦
emerges. This suggests that there is a phase transition from
anatase to rutile at about 600◦C which agrees with previous
experiments[10,18]. In addition, the XRD patterns shows
that, with increasing firing temperatures, the intensity and
sharpness of the TiO2 peaks grow, indicating an increase
in crystallinity and particle size. For more, the photoactiv-
ity increases according to the calcination temperature[11].
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Fig. 2. XRD patterns of powders prepared at different calcination temperatures (A: anatase R: rutile).

However, the powders (TiO2) produced at 600◦C are prob-
ably more active.

3.2. Photocatalytic activity of the solids

3.2.1. Adsorption of 2-naphthol
All batch equilibrium experiments were conducted in

the dark. 2-naphthol adsorption has been performed at
25◦C on neat TiO2 (Degussa P-25) (0.75 g), on a home
prepared titania sample TiO2 (600◦C) (0.75 g), on ac-
tivated carbon AC (0.25 g), on a suspended mixture of
TiO2(Degussa P-25) + AC, and on TiO2 (600◦C) + AC
with the same respective masses. The kinetics of adsorp-
tion are given inFig. 3 for C0 = 5 × 10−4 mol/l (initial

Fig. 3. Kinetics of adsorption of 2-naphthol in the dark forC0 = 5 × 10−4mol/l. AC (0.25 g), TiO2 (Degussa P-25) (0.75 g), TiO2 (600◦C) (0.75 g),
TiO2 (Degussa P-25) (0.75 g)+ AC (0.25 g), and TiO2 (600◦C) (0.75 g)+ AC (0.25 g).

concentration of pollutant). A value of about pH 6 was used.
It can be observed that most of adsorption occurred within
30 min. The equilibrium concentrations were determined
using HPLC after centrifugation and filtration, through Mil-
lipore filters (0.45�m diameter), of the suspension. The
amounts of 2-naphthol adsorbed are calculated as follows:

n(ads) = V	C (2)

wheren(ads) is number of moles adsorbed,	C is the differ-
ence between the initial concentration, (C0) and equilibrium
concentration, (Ce), andV the volume (1 l).

In Fig. 3, then(ads) order found for the five solids (AC>
TiO2 (600◦C) + AC ≥ TiO2 (Degussa P-25) + AC 	
TiO2 (600◦C) ≥ TiO2 (Degussa P-25)) suggests that the
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Fig. 4. Kinetics of 2-naphthol disappearance in the dark and photodegradation (UV) in the presence of various solids.

adsorption capacity on AC is much higher than on TiO2
(600◦C) and on TiO2 (Degussa P-25). But, the amount
n(ads) on TiO2 (600◦C)+AC and TiO2 (DegussaP-25)+AC
are respectively slight smaller than on pure AC. The origin
of this difference can be ascribed to a strong interaction be-
tween TiO2 particles and AC. This result has been observed
by other authors[15,16].

3.2.2. Kinetics of the photocatalytic degradability of
2-naphthol

Fig. 4 shows the kinetics of disappearance, as a function
of time, of illuminated 2-naphthol with an initial concen-
tration of 5× 10−4 mol/l in presence of the different pho-
tocatalysts. The period of adsorption in the dark is 90 min.

Fig. 5. Linear transform 1n(C0/C) = f(t) of the kinetic curves of 2-naphthol disappearance for (TiO2 (Degussa P-25), TiO2 (600◦C), TiO2 (Degussa
P-25)+ AC, TiO2 (600◦C) + AC) at 45 min of irradiation.

The direct photolysis without solids could be neglected with
less than 4% of conversion after 3 h of UV-irradiation. The
total photodegradation of the 2-naphthol was reached in ap-
proximately 180 min for TiO2 (Degussa P-25) and 150 min
for TiO2 (600◦C). On the other hand, the irradiated mix-
ture (TiO2 (Degussa P-25)+AC) and (TiO2 (600◦C)+AC),
totally eliminates 2-naphthol in 90 min and 60 min, respec-
tively.

The curves inFig. 4are of the apparent first order process
as confirmed by the linear transforms ln(C0/C) = f(t) of
Fig. 5. The apparent first order rate constants (kapp) for the
four photocatalysts are presented inTable 1. kapp has been
used as comparison parameter, since it is independent of the
used concentration.
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Table 1
Apparent first-order rate constants (kapp) for different photocatalysts

Photocatalysts kapp (min−1)

TiO2 (600◦C) + AC 0.0455
TiO2 (Degussa P-25)+ AC 0.0415
TiO2 (600◦C) 0.0249
TiO2 (Degussa P-25) 0.0222

It enables one to determine a photocatalytic activity in-
dependent of the adsorption in the dark. The photocatalytic
activity of the TiO2 (600◦C)+AC system determined from
the (kapp) is higher than that of neat TiO2 (Degussa P-25).

The photoactivity of the four photocatalysts can then be
ranked in the following order: TiO2 (600◦C) + AC ≥ TiO2
(Degussa P-25) + AC 	 TiO2 (600◦C) ≥ TiO2 (Degussa
P-25).

4. Conclusions

The results reported in this work indicate that:

1. The nanocrystalline TiO2 powders produced by hy-
drolysis of TTIP at various temperatures were studied
using TGA and XRD.

2. The TiO2 produced at 600◦C and calcined for 3 h,
exhibits the highest photoactivity, which is comparable
to that of commercial TiO2 (Degussa P-25).

3. The calcination at high temperatures is detrimental to
the photocatalytic activity of TiO2.

4. The rates of photocatalytic oxidation of 2-naphthol in
aqueous solutions over UV-irradiated solids powders
obey pseudo-first order kinetics.

5. The photodegradation order found for the four photo-
catalysts (TiO2 (600◦C)+AC ≥ TiO2(Degussa P-25)+
AC > TiO2(600◦C) ≥ TiO2 (Degussa P-25)) sug-
gests that their photoactivity is directly related by an
important adsorption of 2-naphthol on AC followed
by a mass transfer to photoactive titania.

6. In the treatment of waste water, the system TiO2
(600◦C)+AC enables it to photocatalytically degrade
organic pollutant in a much shorter time than with
TiO2 alone.
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